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Abstract. This paper presents a method called Robust Edge Aware De-
scriptor (READ) to compute local gradient information. The proposed
method measures the similarity of the underlying structure to an edge
using the 1D Fourier transform on a set of points located on a circle
around a pixel. It is shown that the magnitude and the phase of READ
can well represent the magnitude and orientation of the local gradients
and present robustness to imaging effects and artifacts. In addition, the
proposed method can be efficiently implemented by kernels. Next, we de-
fine a robust region descriptor for image matching using the READ gra-
dient operator. The presented descriptor uses a novel approach to define
support regions by rotation and anisotropical scaling of the original re-
gions. The experimental results on the Oxford dataset and on additional
datasets with more challenging imaging effects such as motion blur and
non-uniform illumination changes show the superiority and robustness
of the proposed descriptor to the state-of-the-art descriptors.

1 Introduction

Local feature detection and description are among the most important tasks
in computer vision. The extracted descriptors are used in a variety of applica-
tions such as object recognition and image matching, motion tracking, facial
expression recognition, and human action recognition. The whole process can be
divided into two major tasks: region detection, and region description. The goal
of the first task is to detect regions that are invariant to a class of transforma-
tions such as rotation, change of scale, and change of viewpoint. The detected
regions are then described by a feature vector. An ideal region descriptor should
not only be invariant to geometric transformations but also be robust to imaging
effects such as blurriness, noise, distortions, and illumination changes [1].

This paper focuses on the second task, region description. Local gradients
are commonly used by the state-of-the-art methods. Although local gradient
information is very powerful, it is susceptible to imaging effects such as noise,
illumination changes, and blurriness. The first contribution of this paper is a
novel method to compute local edge information. The proposed READ method
is similar to local gradients but is computed in a novel way. It provides both
magnitude and orientational information at each pixel, and is robust to imag-
ing effects. Similar to using gradients, the proposed READ method can be used
in basic image processing operations such as edge detection, segmentation, and
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texture analysis. In particular, due to its robustness, READ is useful in condi-
tions where undesirable imaging effects are unavoidable (e.g., noise in magnetic
resonance images or blurriness in underwater imaging). The second contribution
of this paper is the kernel implementation of the proposed READ method. The
presented implementation makes the method fast for practical use. The third
contribution of this paper is a novel method for determining support regions
around the regions detected by affine detectors. First, it is shown that in theory
the support regions can be scaled (with different scaling factors along the eigen-
vectors of the elliptical affine region) and rotated. Then, through experiments
it is demonstrated that this method of support region definition can improve
the results compared to the simple method of isotropic scaling of the original
regions detected by affine detectors which is suggested in [2]. The advantages
of the new descriptor are first explored in common geometric transformations,
and then in more challenging imaging effects such as motion blur, non-uniform
illumination changes with moving shadows, and images with different levels and
types of noise. Although they are very important, these challenging effects are
less noted in the evaluation of the previous descriptors.

2 Related Works

There are two main steps in finding corresponding points in two images. In the
first step, interest points (regions) are found in the images. Ideal points should be
highly discriminative and robustly detectable under different imaging conditions
and geometric transformations. Some examples of detection methods include
Difference of Gaussian (DoG) [3], Harris-Affine [4], and Hessian-Affine [5]. A
review and comparison of region detection methods can be found in [5, 6].

Many detectors provide circular or elliptical regions with different sizes around
the detected points for point description. The size of the detected region is deter-
mined by the detected scale of the region. By transforming the detected regions
(elliptical and circular) to a circular region of a fixed radius, the regions are nor-
malized into a canonical form. As a result, an affine transformation is reduced
to a rotation, and an affine invariance on the original image can be obtained by
rotation invariance on the canonical region [5]. Hence, region descriptors usually
define rotation invariant features to provide descriptors that are invariant to
local affine geometric transformations.

One of the most popular descriptors is the Scale Invariant Feature Transform
(SIFT) [3]. The main information used in SIFT is the magnitude and orienta-
tion of local gradients accumulated in subregions. SIFT is later extended in the
Gradient Location and Orientation Histogram (GLOH) method [1]. Mikolajczyk
and Schmid [1] demonstrate that SIFT and GLOH outperform other descriptors
obtained using shape context, steerable filters, spin images, differential invari-
ants, complex filters, and moment invariants. Some other descriptors include the
Center-Symmetric Local Binary Pattern (CS-LBP) [7], the shape of MSER [8],
the Local Intensity Order Pattern (LIOP) [9], and KAZE [10].
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DAISY is a successful method recently proposed by Tola et al. [11]. Similar
to SIFT, DAISY uses the magnitude and orientation of local gradients; however,
the weighted sum of gradient orientation is replaced by the convolution of the
gradient in specific directions with several Gaussian filters. Recently, it has been
shown that the intensity ordinal information is more useful than the fixed loca-
tion bins used by many descriptors such as SIFT and DAISY. The idea has been
used by several descriptors such as LIOP [9], MROGH, and MRRID [12, 2].

A new promising approach is in developing “binary” descriptors such as
BRIEF [13], Brisk [14], ORB [15], Freak [16], and BinBoost [17] for real-time
applications. A comparative evaluation of these descriptors is presented in [18].
The recent paper by Miksik and Mikolajczyk [19] also compares some of these
methods in the accuracy and speed trade-offs suggesting that binary descriptors
provide comparable precision/recall results with SIFT and outperform in speed.
On the other hand this paper reports that LIOP, MRRID, MROGH are slower
but outperform SIFT and other binary descriptors.

3 Robust Edge Aware Descriptor

Considering neighbors on a circle (or multiple circles) around a pixel is a popular
approach in rotation invariant methods. The values of the circular neighbors are
usually encoded in two ways: 1) by applying a threshold (e.g., the center pixel’s
intensity) similar to the LBP [20] and its variants, 2) by transforming the values
into frequency components as suggested by some texture classification meth-
ods [21–25]. It is argued that applying a threshold by the LBP-based methods
compromises some important information and demonstrated that the latter ap-
proach outperforms the first one [24]. The 1D Discrete Fourier Transform (DFT)
of the neighbor’s intensity values is defined as

F (n) =

P∑
k=1

f(k)e
−2πi(k−1)(n−1)

P , (n = 1, ..., P ), (1)

where F (n) consists of P complex numbers, known as the frequency compo-
nents. Since f(k) consists of real numbers, the frequency components of F (n)
are conjugate symmetric about the DC component. That is, the 2nd and the
P th components (similarly the 3rd and the (P − 1)

th
, and so on) have the same

magnitude but opposite phase. A recent work [23] shows that the low frequency
components (F (1), F (2), and F (P )) comprise more than 90% of the f(k) signal
in some well known texture datasets, and therefore can well represent the texture
around a pixel. Inspired by this work, we demonstrate that the second frequency
component (or equivalently the P th component) can be used to robustly com-
pute the edge information. To better explain the edge detection ability of F (2),
we need to show the characteristics of function f(k) when it is around an edge.
We define an edge as the line separating a dark region from a bright region as
shown in Figure 1(a). In this example, we traverse the circular samples in the
clockwise direction. We start from a dark region, cross the edge and go into the
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(a) (b) (c) (d)

Fig. 1. Using READ operator to compute local edge. a) P sample are located on radius
of R around a pixel. b) The function of samples have a rectangular shape. c) The DFT
of a rectangular shape function is a sinc. The highest values of the sinc function are
at n = 1 and n = {2, P}. d) |F (2)| as a function of the distance of the center of the
sampling circle from the edge.

bright region, cross the edge again, and come back to the starting point in the
dark region. Using this circular sampling method, the function of an edge can
be characterized as a rectangular shape function as shown in Figure 1(b). For
simplicity, assume that the rectangular function has a value of one in the bright
region. The DFT of the rectangular shape function with width M (using Eq. 1)
is a sinc shape function of the following form:

F (n)rect =
sin(π(n−1)MP )

sin(π(n−1)P )
× e−

iπ(n−1)(M−1)
P . (2)

It can be easily observed that the magnitude of this sinc shape function,

| sin(π(n−1)M/P )
sin(π(n−1)/P ) |, has the maximum value at n = 1 and then at n = {2, P} (Fig-

ure 1(c)). As a result, an edge manifests itself with maximum values in F (1),
F (2), and F (P ). It is noteworthy that among these three components, F (1) rep-
resents the average intensity (known as DC component), which gives information
if the pixel is located in a dark or bright region, while F (2) (or F (P )) is more
sensitive to the actual edge information around the pixel. Another possible in-
terpretation of F (2) is that it approximates a rectangular shape function better
than the other components. To better demonstrate the edge detection ability we
plot |F (2)| as a function of the distance of the center of the circle from the edge
for the given example shown in Figure 1(d). In this example, we choose points
between pixels 2 and 5 with an increment of 0.1 pixels. The magnitude of F (2) is
shown for each point in Figure 1(d). As one can see, |F (2)| reaches its maximum
value at location 3.5 which is the exact point separating the dark region from
the bright region. Now, we formally define READ by setting n = 2 in Eq. 1:

READ =

P∑
k=1

f(k)e
−2πi(k−1)

P . (3)
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Eq. 3 gives a complex number; hence, it can be further decomposed into real
and imaginary parts:

Re(READ) =

P∑
k=1

f(k)cos(
2π(k − 1)

P
), (4)

Im(READ) = −
P∑
k=1

f(k)sin(
2π(k − 1)

P
). (5)

The magnitude and the phase of READ can be simply computed from the real
and imaginary parts. The magnitude of READ represents the amount of rect-
angular shape function (i.e., the strength of an edge), while the phase indicates
the starting location of the rectangular shape function (i.e., the edge orienta-
tion). One may note that the exact value of the phase depends on the neighbor
ordering strategy. We start from the x axis and traverse the neighbors in the
clockwise direction as shown in Figure 1(a). Using this protocol will result in
the same orientation value computed by the conventional gradient orientation
formula.

The rectangular shape function of f(n) (which characterizes an edge) is com-
parable to the uniform patterns in the LBP method which represent edges of
varying positive and negative curvatures [20]. However, the uniform patterns are
acquired by applying a threshold which makes the patterns sensitive to noise,
while in READ, an edge appears as a low frequency component (F (2)) which
is less affected by noise. Similar to the LBP, the READ can be acquired using
different R and P . Figure 2 compares the gradient calculation of the READ op-
erator with that of the central difference (∆hf(x) = f(x+h/2)−f(x−h/2)) on a
synthetic and a real image. READ is computed with setting (P = 8, R = 1) and
h = 1 pixel in the central difference method. To make a fair visual comparison,
the magnitude of the gradients are normalized in the range [0 1].

As one can observe the magnitude of the READ is zero in flat regions, while
it is maximized on pixels located on an edge. However, this change is gradual in
contrast to the central difference (this was also demonstrated in Figure 1(d)). The
phase of READ faithfully represents the orientation of the local edge. One may
consider the orientational values around the circle in the synthetic image. The
color map in the bottom right of the phase image shows the color representing a
given angle. Similarly the change in phase is smoother than that of the central
difference. The second row of Figure 2 compares edge characterization on a real
image. It can be observed that the outputs of the two methods look very similar
both in magnitude of the detected edges and in their orientations. However, one
may note that the READ is more sensitive to finding faint edges. For example,
the edges in the background on the upper left side and above the hat are more
clear in the magnitude of READ compared to that of the local gradients.

3.1 Properties of READ

READ has several advantages that make it favorable for computer vision and
image processing applications. The first advantage is its robustness to noise. The
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Fig. 2. Computing gradient on a synthetic (first row) and a real image (second row).
The first column is the original image. The 2nd and 3rd columns are the magnitude and
orientation of gradient computed by the central difference. The 4th and 5th columns
are the magnitude and orientation of gradient computed by READ.

reason is that noise appears in high frequency components. However, READ is
defined based on a low frequency component, F (2), which is not sensitive to
noise. This property will be further demonstrated in Section 4. The next property
of READ is its invariance to linear changes of illumination. One can simply
observe that any linear change of illumination linearly changes the magnitude
of function f(k). This effect, however, does not change the phase of READ. To
keep the magnitude of READ invariant to linear illumination changes, the image
intensity is normalized to have zero mean and unit standard deviation. Finally,
READ is robust to blur effect. The reason is that the blur effect mainly dampens
the high frequency components and the low frequencies are less affected. These
properties are further explored in Section 4.

3.2 Efficient Implementation

Speed is one important factor for descriptors. As a result a good descriptor
should also have a reasonable runtime. In this regard, we present an efficient
implementation for the READ operator. The idea is to define kernels to represent
Eqs. 4 and 5 and finding the gradients by convolution of the defined kernels with
the image. For a radius of R, the kernel has a size of N ×N where N = 2R+ 1.
There are two factors to compute in the kernel as defined in Eqs. 4, 5: the value of
the samples, f(k), and the cos/sin coefficients. Since, the location of the samples
are known for a specific R and P , both factors could be found easily.

The value of each sample is found using bilinear interpolation from its four
nearest neighbors if it is not exactly located on a pixel. To compute the value of
f(k) we consider a P ×N2 matrix. The kth row of the matrix represents the kth

sample and each column represents the weight of each element in the kernel for
the bilinear inertpolation ( we order the elements of the kernel in a 1×N2 row
vector). We call this matrix B representing the bilinear weights of the kernel.
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Fig. 3. Construction of matrix B, C, and S for R = 1 and P = 8 setting. The kernel
size is 3×3. Samples are either located on a pixel (f(1)) or between pixels (f(2),f(8)).
In the latter case, we need bilinear interpolation to compute the value of the sample.

Now, we consider two 1 × P row vectors called C and S to represent the cos
and −sin weights in Eqs. 4 and 5. Figure 3 illustrates the construction of B, C,
and S for R = 1, P = 8 setting. The two kernels representing the equations can
be simply computed by matrix multiplication Gx = CB and Gy = SB. To use
the kernel in the convolution operation we reshape Gx and Gy from 1 ×N2 to
N ×N matrices and reflect the values around the center of the matrix.

3.3 Region Descriptor

Fig. 4. Rotation in-
variant phase infor-
mation.

In this section we present a region descriptor for an arbi-
trary affine region detector. The orientation and magni-
tude of the underlying structure can be found by READ.
However, although the magnitude of READ is rotation
invariant, the phase of READ changes by rotation. As-
sume that the phase of READ at an arbitrary point x is
α. When a rotation by θ◦ occurs, the phase will change to
α′ = α+θ. Rotation invariance can be obtained by decom-
posing the phase of READ (i.e., α, α′) into two compo-
nents: a constant part related to the underlying structure
(β) and a variable part related to the the location of the
point (γ, γ′) as shown in Figure 4. This approach is simi-
lar to the local rotation invariant coordinate system used
by some descriptors such as MROGH [12], RIFT [26], and
RIFF [27]. Instead of considering a new coordinate system,
this can be easily done in READ by just subtracting the angle of the location of
the point from the phase of READ computed in the regular coordinate system
(i.e., β = γ − α = γ′ − α′) which makes the computation fast.

By considering d orientational bins centering at orii, (1 ≤ i ≤ d), the phase
of READ is linearly assigned to the two closest orientational bins:

orii = (2π/d)× (i− 1). (6)
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Bini(x, y) =

{
(2π/d)−|orii−∠READ(x,y)|

(2π/d) , if |orii − ∠READ(x, y)| < 2π/d

0 , otherwise.

(7)
The intensity ordinal information is used to form subregions. First, the pixels

are sorted in a non-descending order of their intensity values, X1, ..., Xn. Then,
the ordered pixels, Xi, are divided into k partitions,

Pr(p) = {Xi|Xdn(p−1)/k+1e ≤ Xi ≤ Xdnp/ke}, (8)

where d e denotes the ceiling operator. The orientational histograms in each
partition, Pr(p), is accumulated and weighted with the average magnitude of
the READ in that partition,

Hist(p, i) =
∑

∀(x,y)∈Pr(p)
Bini(x, y).µREAD(p), (9)

where Bini(x, y) is computed by Eq. 7 and µREAD(p) by

µREAD(p) =
1

|Pr(p)|
∑

∀(x,y)∈Pr(p)
|READ(x, y)|, (10)

where |Pr(p)| denotes the number of pixels in partition p. The final descriptor is
a d×k feature vector constructed by concatenating the orientational histograms
in all subregions.

Some descriptors (e.g., MROGH, MRRID) use support regions defined as the
scaled version of the original detected region to improve their performance. Here,
a novel and more flexible support region definition is presented. We suggest that
the support region can be obtained by rotating and scaling with different scaling
factors along the eigenvectors of the elliptical affine region (anisotropic scaling).

Using vector notation, a point XL in an ellipse satisfies XT
LMLXL = 0 in

the homogeneous representation, where ML is a symmetric matrix. As shown
by Mikolajczyk and Schmid [4], when two elliptical regions XT

LMLXL = 0 and

XT
RMRXR = 0 are corresponding, their canonical regions, XLc = M

1/2
L XL and

XRc = M
1/2
R XR, are related by a rotation:

XRc =R(α)XLc

⇒ XR =M
−1/2
R R(α)M

1/2
L XL.

(11)

Since ML (and similarly MR) is a symmetric matrix, it can be decomposed
as ML = ΣLΛLΣ

T
L , where ΣL is the orthogonal eigenvector matrix, and ΛL the

diagonal eigenvalue matrix. We define the transformation H for the scale matrix

S =

[
s1 0
0 s2

]
:

H = ΣLS
−1ΣT

L , (12)
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Lemma 1. Transformation H maps XT
LMLXL = 0 into a new ellipse, the

eigenvectors of which are the same as the old ellipse but the eigenvalues are
scaled by the (s1)2 and (s2)2 factors.

Proof. If the ellipse XT
LMLXL = 0 undergoes the H transformation, the new

ellipse is defined as X ′TL M
′
LX
′
L = 0, where X ′L = HXL and M ′L = H−TMLH

−1.
Substituting ML = ΣLΛLΣ

T
L in the M ′L equation will results in:

M ′L = (ΣLS
−1ΣT

L )−TΣLΛLΣ
T
L (ΣLS

−1ΣT
L )−1 (13)

After a few steps of reduction this equation results in M ′L = ΣLSΛLS
TΣT

L .
Considering the new eigenvalue matrix, Λ′L = SΛLS

T , results in M ′L = ΣLΛ
′
LΣ

T
L

which is claimed in Lemma 1.
ut
Before presenting the theorem we present the following equations (used in

the proofs). Assume that S and D are diagonal and Q is orthogonal, then it is
easy to show:

(QDQT )1/2 = QD1/2QT = QD1/2Q−1, and (14)

(QSDSTQT )1/2 = QD1/2STQT = QD1/2SQT . (15)

Theorem 1. Assume that the original ellipses defined by ML and MR un-
dergo the HL and HR transformations, X ′L = RΣLS

−1ΣT
LXL, and X ′R =

RΣRS
−1ΣT

RXR, where R is an arbitrary rotation matrix. The canonical regions
of X ′L and X ′R are related by a rotation.

Proof. We need to show that Eq. 11 holds for X ′L and X ′R with the new elliptical
regions defined by M ′L and M ′R. We start by multiplying Eq. 11 with HR

HRXR = HRM
−1/2
R R(α)M

1/2
L XL

= HRM
−1/2
R R(α)M

1/2
L H−1L HLXL

= (RΣRS
−1ΣT

R)(ΣRΛ
−1/2
R ΣT

R)R(α)(ΣLΛ
1/2
L ΣT

L )(Σ−TL SΣ−1L R−1)HLXL

= (RΣRS
−1Λ−1/2R ΣT

RR
−1)RR(α)R−1(RΣLΛ

1/2
L SΣ−1L R−1)HLXL

= (H−TR MRH
−1
R )−1/2RR(α)R−1(H−TL MLH

−1
L )1/2HLXL.

⇒ X ′R = M
′−1/2
R R(γ)M

′1/2
L X ′L.

(16)

ut
Figure 5 illustrates the concept. The original regions detected by an affine

detector (yellow) are related by rotation. The red regions are anisotropically
scaled and rotated version of the original regions detected by affine detectors
(yellow). It can be observed that the red regions are related by rotation as well.
This idea can be considered as a generalized form of support regions suggested in
MROGH in which R in the H transformation is an identity matrix and s1 = s2 in
the S matrix. Nonetheless, this generalized form gives more flexibility to choose
the support regions.
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Fig. 5. Using new support regions (red)
as anisotropically scaled and rotated
version of the original regions detected
by affine detectors (yellow). The new red
regions are related by rotation.
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4 Experimental Results

4.1 Gradient Calculator Robustness

In the first experiment, we examine the robustness of the READ operator for
gradient calculation for different imaging effects and artifacts. We compare the
READ gradient operator with the central difference, the first order derivative
of Gaussian (i.e., ∆f(x) = f(x) ∗∆G(σ), where ∗ is convolution and ∆G(σ) =
−2x√
2πσ3

e−
x2

2σ2 ), and Sobel. Central difference is an old operator which is still used

by some descriptors (e.g., MROGH). First order derivative of Gaussian is used in
the Canny edge detector (a popular edge detector) and Sobel is a known gradient
operator. For the experiments we use Flower, Foliage, Friut, Winter, and Man
Made datasets from the McGill color image collections1. This includes 821 color
images which are converted to the gray scale format. For the noise experiments,
two types of noise are added: Gaussian noise with a specific standard deviation
(σ = 1, 1.5, ..., 3) and the Salt & Pepper noise with different noise densities
(density = 0.05, 0.10, ..., 0.35). For the blur effect experiment, the images are

smoothed with a Gaussian kernel (i.e., K(x, y) = e−
x2+y2

2σ2 ) with a window size
of W × W (W = (1.5 × σ + .5) × 2 + 1). The experiment is performed for
σ = 1, 1.5, ..., 3. Finally, the motion blur effect is generated by Matlab using
distances of 4 to 36 pixels with a step size of 4 pixels. To make the result of the
methods comparable, the gradient vector at pixels (Gi = [gx, gy]T ) is normalized

1 http://tabby.vision.mcgill.ca/html/welcome.html
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Fig. 7. The robustness of Central Difference (CD), Gaussian Derivative (GD), Sobel,
and READ for different imaging effects.

in each image I:

Gi =
Gi∑

∀Gi∈I |Gi|
. (17)

Then we measure the normalized error:

Err =
1

N

N∑
i=1

|Gcori −Gorigi |
|Gorigi |

, (18)

where Gcori and Gorigi are the gradient vectors in the corrupted and the original
image, and N the number of pixels in the image. To avoid instability due to small
values in the denominator, the vectors with small magnitudes (|Gorigi | < 10−6)
are excluded. Figure 7 compares the normalized error of the compared methods.
In the noise conditions (both Gaussian and Salt & Pepper) the proposed READ
operator and the first order derivative of Gaussian are equally the most robust
methods. However, in blur conditions (Motion and Gaussian) the READ opera-
tor outperforms the other methods. The central difference is the most sensitive
method in all experiments.

4.2 Tuning Parameters

The next experiment is performed to find the best tuning parameters for the
gradient scale, rotation, and scaling factors of the supporting regions. A total of
50 image pairs with different transformations (mainly rotation and zoom) are
used 2. Six regions are considered (Figure 6(a)). All regions undergo isotropic
scaling (IS) by a factor of 1.5 from the previous region, regions 1-3 undergo
anisotropic scaling (AS) in the direction of eigenvectors of the elliptic region,
regions 1 and 4 and regions 3 and 6 are rotated by θ◦ and −θ◦. The best gradient
scale is searched for R = 1, 2, 3, 4, 5 with corresponsing P = 6, 8, 10, 12, 14. The
best s1 and s2 are searched in the range [0.7, 1.3] in steps of 0.05, and the
best rotation angle from the range [0, 25]◦ with a step of 5◦, respectively. One
may note that other configurations are also possible, and similar to DAISY the
best parameters can be learned systematically [28]. Nonetheless, this specific

2 Images downloaded from http://lear.inrialpes.fr/people/mikolajczyk/
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Fig. 8. The performance of the descriptors. The READ− is our descriptor with no
anisotropic scaling or rotation of support regions. The y axis is recall and the x axis is
1-precision.

configuration is sufficient to show the capability of the new descriptor. The best
configuration is found to be R = 4, P = 12, s1 = 0.75, s2 = 1.25, and θ = 20◦.
Figure 6(b) compares the configuration with only isotropic scaling (IS), and its
combinations with anisotropic scaling (AS) and rotation (R). As one can see,
the suggested strategy to define support region improves the performance of the
descriptor.

4.3 Oxford dataset

To evaluate the performance of the proposed descriptor we follow the evaluation
protocol described by Mikolajczyk and Schmid [1] using the standard Oxford
dataset3. The dataset includes image sets to evaluate different geometric trans-
formations and imaging effects. The first image in each set is considered as a
reference image and the other images are acquired under the designated change.
A match is considered correct if the overlap error in the image area covered by
two corresponding regions is less than 50% of the union of the regions and the
recall/1-precision is reported.

We compare our method to SIFT (as the baseline), DAISY, and LIOP and
MROGH which have the highest performance according to the recent descrip-
tor comparison study by Miksik and Mikolajczyk [19]. Figure 8 shows the per-
formence of the descriptors. Two versions of our method are shown: 1) using
only isotropic scaling for support regions (READ−), and 2) adding anisotropic

3 Available at http://www.robots.ox.ac.uk/ vgg/research/affine/
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scaling and rotation to the previous version (READ). As one can see, the pro-
posed method outperforms the other methods in all cases including illumination
change (leuven), rotation and zoom (bark, boat), blur effect (trees, bikes), and
view point change (wall, graf). An interesting case is the “1-5” pair in the graf
dataset in which adding anisotropic scaling and rotation degrades the perfor-
mance. This case shows that the performance of rotated and anisotropically
scaled support regions relies on the accuracy of the affine region detector. The
regions detected by the Hessian-affine detector is not very precise on the graf
dataset due to the textureless nature of the scene. Therefore, due to a large view-
point change, a small inaccuracy produces a large error when we use rotation
and anisotropic scaling to define the support regions. Without using rotation or
scaling (READ−), however, we can get a much better result for this special case.
Nevertheless, if the viewpoint change is smaller (e.g., less than 40◦ as shown in
“1-4” pair in graf) or if the scene has some texture to help better detection
(e.g., the wall), anisotropic scaling and rotation improve the result as shown in
the other cases. With the exception of leuven, the MROGH is the second best
method. In general, all the examined descriptors perform better than SIFT. The
average runtime to compute the descriptors on a PC with an Intel quad core
2.60 GHz CPU with 16GB RAM running Windows 7 Professional is 2.4 ms for
READ, 3.1 ms for MROGH, 2.1 ms for LIOP, 1.9 ms for DAISY, and 1.0 ms for
SIFT. Therefore, our method not only outperforms MROGH but also is quite
faster.

4.4 Noise

To evaluate the performance of the descriptors in the presence of noise, the
“1-5” image pairs of the Oxford dataset and two types of noise (i.e., Gaus-
sian and the salt & pepper, SP) are considered. The Gassian noise with differ-
ent Signal to Noise Ratio (SNR), and SP noise with different noise density are
added to the “5” image while the reference image “1” is unchanged. We com-
pute the area under the curve (AUC) for the recall/1-precision graphs for the
original (AUCorig) and the noisy (AUCnoise) conditions. The AUC drop ratio
((AUCorig − AUCnoise)/AUCorig) is shown in Figure 9. As one can see, the
READ method is the most robust one in all levels of both types of noise. In
some levels of noise READ− is slightly more robust than READ. After READ,
the next robust methods are MROGH, and DAISY. SIFT and LIOP are the
most sensitive methods in the Gaussian and SP noise, respectively.

4.5 Motion Blur

Motion blur is one of the common and challenging problems in many computer
vision applications. In spite of its importance, and to the best of our knowledge,
the effect of motion blur on the performance of descriptors have not been ex-
plored. To do so, we apply the motion blur effect function in MATLAB to our
images and generate and add motion blur effect with distances of 4 to 16 pix-
els with a step of 4. Figure 10(a) shows the the performance of the descriptors
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Fig. 9. The AUC drop ratio in different
levels of noise for a) Gaussian noise, b)
salt & pepper noise.
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Fig. 10. Performence of descriptors on
a) motion blur, b) non-uniform illumi-
nation change. The y axis is recall and
the x axis is 1-precision.

for the “1-5” pair (16 pixels distance). One can see that the READ descriptor
notably outperforms the other methods.

4.6 Non-uniform Illumination

Non-uniform illumination and shadows are among the most challenging effects.
To evaluate the performance of the descriptors we use the “1-2” image pairs
from the nuts dataset4. As can be seen in Figure 10(b), the READ descriptor
remarkably outperforms the other methods with about 14% higher maximum
recall than the second best method.

5 Conclusions

In this paper we propose a new gradient operator called READ which is robust to
imaging effects. A kernel implementation of the READ is presented which makes
the computation efficient. We demonstrate the ability of READ by defining a
region descriptor and comparing it with other state-of-the-art descriptors. This
paper presents a novel method to define support regions for the regions detected
by an affine detector. The experimental results show that the READ descrip-
tor outperforms the state-of-the-art descriptors such as SIFT, LIOP, DAISY,
and MROGH in ordinary geometric transformations and common imaging ef-
fects. Additional experiments on noise, motion blur, and non-uniform illumi-
nation change further demonstrate the robustness and superior performance of
the proposed method. The proposed READ gradient calculator can be used in
other image processing and computer vision applications such as segmentation,
texture classification, object recognition, and in applications that need robust
gradient estimation.

4 Accessible at http://lear.inrialpes.fr/people/mikolajczyk/Database/
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